- A+
前面讲过,老师在教孩子们加法和减法的时候,会给他们一个其中的算式都互不关联的单子要他们记忆,同样,大多数孩子们上了三年级,就会遇到类似的几个“乘法算式”。比如像“2×3=6”,另一个是“3×2=6”。如果孩子们问起这一巧合,会被告之(就像教加法时一样)“乘法项是可互换的”,这当然没有解释什么,而只是把孩子们已经知道的事实用更华而不实、让人糊涂的方式告诉给了孩子们。几乎可以肯定,老师会再给孩子一个单子,上面是“100个乘法算式”,于是孩子就要去记忆并会反复经常地被测验。
再以后,可能在五年级的时候,他们会遇到分数,被告知“×6=3”以及“×6=2”。再然后,他们可能会被教到2和3是6的因子。
所以,在从一、二年级直到差不多七年级之间(这由他们的老师被要求用哪种算术课本而定),孩子们会有机会收集到下列这些带6的不相关的算式(伴随着整套的说明和小鸡与切块馅饼的插图):
2×3=6
3×2=6
6÷2=3
6÷3=2
×6=3
×6=2
6×=3
6×=2
2是6的
3是6的一半
2和3是6的因子
但是,和我讲“加法算式”时说过的一样,这些不是分离的“乘法算式”或“除法算式”或其他什么东西。它们是同一个事实,一个不是算术公式,而是自然存在的事实。数字6的自然属性,孩子们可以自己找出来并随意反复证明。事实就是当你有如下这么多物体时:
******
你可以把它们这样放置:
***
***
所有上面那些写下来的“算式”是书写与研究这同一个事实的不同方式。所以任何一个发现了这个关于6的特性与事实的人,都可以如法炮制地对待其他数字,再用同样方法写下来。
人们(不管老少)在这么做的时候,会发现有些数字(2、3、5、7,等等)无法写出与第一行相同的第二行。他们或许会有兴趣知道这些数字被称为“质数”,其他的数字叫做“合数”。任一正整数(除了1)的性质是它要么是质数,要么是合数。还有的人或许乐于自己找出200以内的质数,或用电脑列出某个很大的数值以内的所有质数。但是没有人能用一个公式找出所有的质数。
我并不是说,所有孩子都应该知道、父母也都必须教给孩子我上面提到的关于6的性质。我曾经问过,假如阅读是违法的,是否还有孩子愿意学习并改进阅读技巧。这个问话同样适用于初级算术。有许许多多的人一点也不懂算术,依然过着有趣、有尊严、心满意足的生活。而从另一方面说,这里所提到的数字在我看来很有意思,在许多情况下也很有用处。在一堆大同小异的事情之中,我更愿意多了解一些数学。
无论如何,如果我们要向孩子们展示或教他们加、减、乘、除、分数、因子,等等的话,如果能多少照上面提到的方法去做,效果会很好,因为这样一来,那些看似分散独立的算术现象会从一开始就在孩子的头脑中建立起关联。