- A+
人们发明数学,部分原因和发明音乐类似,即数学是那么的迷人,另一部分原因是为了实用。
我的外甥女在四五岁的时候,她的哥哥姐姐教她数数,他们按照《芝麻街》的方式让她背诵数字的名称和顺序。我听见她说:“1、2、3、4、5、7、6、8。”这时便会听见一两个大孩子不乐意地叫起来:“不对!不对!7是在6的‘后边’!”
我当时注意到了这个情景,之后不断地在思索着这一幕。这种学数字的方式会让孩子们对数字形成一种非常奇怪的观念。他们会把数字看成是一群小动物,第一个叫“1”,第二个叫“2”,第三个叫“3”,如此类推。然后,这些小动物会跳起一些莫名其妙的傻乎乎的舞蹈,大人会对这说些像“2加2等于4”之类的话。很可能所有被灌输了这种数字概念的孩子很快都会陷入困境,而这也的的确确发生在了我的外甥女身上。许多年以后,我对几个一直在算术上有问题的成年人谈起我的这个发现,他们都笑了起来,并且说这的确就是他们一直以来对数字的感觉,而且也是他们一直搞不好算术的原因。
出于这个原因,我认为至关重要的是,不要让孩子们在没有具体实物的情况下抽象地学习数字。毫无疑问,每个一年级老师都希望孩子们能学会说“1、2、3”,但这个能力和对数字的理解毫无关系。
换种方式说,当小孩子第一次接触数字时,应该把它们当成形容词而不是名词来看待。不要一上来就是抽象的“3”或“7”,而是说“2个硬币”、“3根火柴”、“4把勺子”或其他什么的。将来还有的是时间,在更久一点的将来,孩子们会通过直觉获得名词的“5”就是一组5个物体的共性。
我还要说的是,让孩子接触按顺序排列的数字,这既无必要也不明智。所以,我们可以在这一次给孩子们展示2样东西,下次则视情形而定,可能是5样其他的东西,或者8样,等等。世界上的数字以随机的形式存在,孩子们也应该预备好随时随地遭遇数字。
另一种对孩子有帮助的做法是,让孩子们有机会以某种排列形式来认较小的数字,例如全部是10以下的数字。比方说,让孩子们接触3个物体,可以让它们排成一排,也可以让它们排成三角形。4个物体的话,可以排列成正方形,也可以是三个一排,剩下的一个放在这一排上面。5个物体可以排成规则的五角形;或者是4个排成正方形,加上1个放在顶上,就像孩子画的房子;或者可以是4个排成正方形,1个放在正方形的中心。6个物体,则可以3个一列排成2列;或者3个排成三角形,另外3个排成一排放在三角形下面。可以把这些排列方式写在卡片的一面,另一面标上它所代表的数字。我绝对不赞成强迫或鼓励让孩子记忆这些卡片。如果卡片很方便易得,让孩子们用它们做各种游戏,或许他们会很快地掌握这些数字间的关系。我认为重要的是不要让孩子们通过计数的办法去辨认小的数字。
在这个过程中,一套多米诺骨牌或许是个很有用的玩具,幼小的孩子们即使只懂得码出那些数字图案,他们也会玩得兴致盎然。记分的技巧则留待日后再说。
我认为同样值得注意的问题是,当大人教孩子数字的时候,如果不移动被数物体的位置,而只是数着“1、2、3”,孩子看着大人指着这些物体,而它们看上去完全一样,不同的只是被赋予的数字,他们便容易认为这些“1、2、3”就是这些物体的名称。事实上,这种误会可以轻易避免。当我们数完了一个数就把这个物体挪到一边,嘴里说:“现在我们有了1个这个东西。”然后再挪动下一个,说:“现在有了2个。”接下来是“现在有了3个、4个、5个”,这样继续下去。这么一来,数字便不是物体的特定名称,而只是被挪到一边的那一组物体的数量多少。
在此过程中,我们可以引进序数的概念:即一条射线上能显示出不同位置的数字,而非一组物体的多少。所以,把一组小物体排成一排,我们可以依次触摸它们,说:“这是第一个,这是第二个,这个是第三个,然后是第四个、第五个、第六个。” 不要上来就讲述“序数”和“基数”的概念。只要我们朴素地使用反映这些概念的语言,孩子们会在相当短的时间内掌握它们之间的不同。
我们在数这些小物体的时候,没必要总是一个一个地数,而是可以一次把两个物体挪到另一边,边挪边说:“现在我们有了2个,现在是4个,现在是6个。”或者也可以3个一组、4个一组地挪动物体,逐渐向孩子展示做这件事有很多方式,我们可以随意挑最顺手的一种来做。
当然也有些孩子自己就能掌握序数和基数的概念,尽管我们大人使用的是让人糊涂的教育方式,甚至尽管我们自己还没搞清楚。但更多的孩子做不到这一点。我想如果能够用上面的方法,很多孩子会更容易搞明白这些定义。